Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Bromotetrakis(1 H -imidazole- $\kappa \mathrm{N}^{3}$)copper(II) bromide

Moayad Hossaini Sadr, ${ }^{\text {a }}$ Davood Zare, ${ }^{\text {a }}$ William Lewis, ${ }^{\text {b }}$ Jan Wikaira, ${ }^{\text {b }}$ Ward T. Robinson ${ }^{\text {b }}$ and Seik Weng $\mathbf{N g}^{\text {c* }}$
${ }^{\text {a }}$ Department of Chemistry, Tarbiat Moallem University of Azarbaijan, Tabriz, Iran,
${ }^{\mathbf{b}}$ Department of Chemistry, University of Canterbury, Christchurch, New Zealand, and ${ }^{\text {c }}$ Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study
$T=113 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.009 \AA$
R factor $=0.053$
$w R$ factor $=0.168$
Data-to-parameter ratio $=16.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

The monoclinic unit cell of the title compound, $\left[\mathrm{CuBr}\left(\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{~N}_{2}\right)_{4}\right] \mathrm{Br}$, emulates an orthorhombic cell as its β angle is close to 90°; the crystal structure is twinned with approximately equal contributions of the two components. The Cu atom is five-coordinate in a square-pyramidal geometry. The cation interacts with the bromide anion through hydrogen bonds, which give rise to a layer structure.

Comment

Following our interest in the copper complexes of polypyrazolylborate ligands (Beheshti et al., 2002; Hossaini Sadr et al., 2004), we have synthesized new complexes of poly(pyrazolyl)silane ligands, which are the neutral analogs of the poly(pyrazolyl)borates (Pullen et al., 1999; Richburg et al., 2000; Hossaini Sadr et al., 2004). An attempt to synthesize the dimethylsilyl adduct of copper dibromide yielded the title blue salt, (I).

(I)

The direct reaction of copper(II) bromide and imidazole in ethanol afforded a centrosymmetric complex of an identical elemental composition (Parker \& Breneman, 1995). If the extremely long $\mathrm{Cu} \cdots \mathrm{Br}$ interaction reported for this structure [3.3767 (4) \AA] is considered as a bond, the geometry of copper is distorted octahedral. The geometry of the Cu atom is clearly square-pyramidal in the title complex: the Cu atom is linked to only one Br atom $[\mathrm{Cu} 1-\mathrm{Br} 1=2.755$ (1) $\AA]$, the other Br atom being more than $4 \AA$ away. It is also linked to four imidazole ligands in a square-pyramidal environment, as shown in Fig. 1. The $\mathrm{Cu} 1-\mathrm{Br} 1$ bond is significantly longer than the covalent bond [2.408 (1) Å] found in the four-coordinate bis(2-chloroimidazole) adduct (Valle et al., 1993). A square-planar geometry is found for copper in the anhydrous as well as in the dihydrated tetrakis(4-methylimidazole) adducts (Näther et al., $2002 a, b$). Both Br atoms engage in hydrogen-bonding interactions, resulting in a layered structure.

Received 28 July 2004
Accepted 9 August 2004
Online 28 August 2004

Figure 1
ORTEPII (Johnson, 1976) plot of (I), with displacement ellipsoids drawn at the 90% probability level. H atoms are drawn as spheres of arbitrary radii.

A copper(II) bromide adduct with four imidazole ligands has been synthesized by reacting cupric oxide with imidazole in the presence of bromide ions (Bhattacharjee \& Choudhury, 1998), but it is not clear whether the compound is that already structurally verified (Parker \& Breneman, 1995) or the title salt.

Experimental

The title compound was obtained adventitiously as block-shaped crystals along with an uncharacterized white compound when copper dibromide was treated with an equimolar quantity of diimidazolyldimethylsilane. The specimen used for the measurements was cut from a large block.

Crystal data

$\left[\mathrm{CuBr}\left(\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{~N}_{2}\right)_{4}\right] \mathrm{Br}$
$M_{r}=495.69$
Monoclinic, $P 2_{1} / n$
$a=8.9625$ (3) А
$b=13.2140(5) \AA$
$c=13.9889$ (5) \AA
$\beta=90.052$ (1) ${ }^{\circ}$
$V=1656.7(1) \AA^{3}$
$Z=4$

Data collection

Siemens $P 4 / \mathrm{CCD}$ area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
$T_{\text {min }}=0.337, T_{\text {max }}=0.653$
14285 measured reflections

Refinement

[^0]$D_{x}=1.987 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 7789 reflections
$\theta=2.7-26.4^{\circ}$
$\mu=6.15 \mathrm{~mm}^{-1}$
$T=113$ (2) K
Plate, blue
$0.48 \times 0.38 \times 0.07 \mathrm{~mm}$

> 3343 independent reflections
> 3081 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.034$
> $\theta_{\max }=26.4^{\circ}$
> $h=-11 \rightarrow 11$
> $k=-16 \rightarrow 14$
> $l=-17 \rightarrow 17$

$$
\begin{aligned}
& w= 1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.1271 P)^{2}\right. \\
&+5.3184 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }= 2.30 \mathrm{e}^{\circ} \AA^{-3} \\
& \Delta \rho_{\min }=-2.23 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$.

$\mathrm{Cu} 1-\mathrm{Br} 1$	$2.755(1)$	$\mathrm{Cu} 1-\mathrm{N} 5$	$2.018(5)$
$\mathrm{Cu} 1-\mathrm{N} 1$	$2.016(5)$	$\mathrm{Cu} 1-\mathrm{N} 7$	$1.995(6)$
$\mathrm{Cu} 1-\mathrm{N} 3$	$2.000(6)$		
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 3$	$89.4(3)$	$\mathrm{N} 3-\mathrm{Cu} 1-\mathrm{N} 7$	$174.0(2)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 5$	$162.0(2)$	$\mathrm{N} 3-\mathrm{Cu} 1-\mathrm{Br} 1$	$93.5(2)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 7$	$89.5(3)$	$\mathrm{N} 5-\mathrm{Cu} 1-\mathrm{N} 7$	$89.6(3)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{Br} 1$	$100.4(1)$	$\mathrm{N} 5-\mathrm{Cu} 1-\mathrm{Br} 1$	$97.7(1)$
$\mathrm{N} 3-\mathrm{Cu} 1-\mathrm{N} 5$	$89.6(3)$	$\mathrm{N} 7-\mathrm{Cu} 1-\mathrm{Br} 1$	$92.5(2)$

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 n \cdots \mathrm{Br}^{\mathrm{i}}$	0.88	2.52	$3.346(6)$	156
$\mathrm{~N} 4-\mathrm{H} 4 n \cdots \mathrm{Br}^{\mathrm{ii}}$	0.88	2.48	$3.355(6)$	170
$\mathrm{~N} 6-\mathrm{H} 6 n \cdots \mathrm{Br}^{\mathrm{iii}}$	0.88	2.55	$3.227(5)$	134
$\mathrm{~N} 8-\mathrm{H} 8 n \cdots \mathrm{Br} 2^{\mathrm{iv}}$	0.88	2.46	$3.341(6)$	174
Symmetry codes:	(i)	$x-1, y, z ;$	(ii)	$\frac{1}{2}+x, \frac{1}{2}-y, \frac{1}{2}+z ;$
$\frac{1}{2}+x, \frac{1}{2}-y, z-\frac{1}{2}$.	(iii)	$1+x, y, z ;$	(iv)	

The β angle of the unit cell is close to 90°. The cell emulated an orthorhombic cell, and this necessitated the use of the twin law matrix $(100,0 \overline{1} 0,00 \overline{1})$. The second twin component refined to 0.474 (3). Measurements on a smaller crystal gave identical results. For each imidazole ring, the five bond distances were restrained to be within $\pm 0.01 \AA$. The twinning problem led to elongated ellipsoids for some of the C and N atoms. The displacement parameters of pairs of connected atoms were restrained by a DELU 0.005 command in SHELXL97 (Sheldrick, 1997) to avoid the displacement ellipsoids becoming too elongated. In the final difference Fourier map, the largest peak was $0.2 \AA$ from Cu 1 and the deepest hole about $0.3 \AA$ from $\mathrm{Br} 2 . \mathrm{H}$ atoms were positioned geometrically $[\mathrm{C}-\mathrm{H}=0.95 \AA$, $\mathrm{N}-\mathrm{H}=0.88 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}$ or N$\left.)\right]$ and were included in the refinement in the riding-model approximation.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

The authors thank the Research Office of Tarbiat Moallem University, the University of Canterbury and the University of Malaya for supporting this work.

References

Beheshti, A., Clegg, W. \& Hossaini Sadr, M. (2002). Inorg. Chim. Acta, 335, 21-26.
Bhattacharjee, C. R. \& Choudhury, P. K. (1998). Transition Met. Chem. 23, 561-564.
Bruker (2001). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Hossaini Sadr, M. (2004). Unpublished results.
Hossaini Sadr, M., Clegg, W. \& Bijhanzade, H. R. (2004). Polyhedron, 23, 637641.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

metal-organic papers

Näther, C., Wriedt, M. \& Jeß, I. (2002a). Acta Cryst. E58, m63-m64. Näther, C., Wriedt, M. \& Jeß, I. (2002b). Acta Cryst. E58, m107-m109.
Parker, O. J. \& Breneman, G. L. (1995). Acta Cryst. C51, 1097-1077.
Pullen, E. E., Rheingold, A. L. \& Rabinovich, D. (1999). Inorg. Chem. Commun. 2, 194-197.

Richburg, L. M., Farouq, J. A., Incarvito, C. D., Rheingold, A. L. \& Rabinovich, D. (2000). Polyhedron, 19, 1815-1820.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Valle, G., González, A. S. \& Ettorre, R. (1993). Acta Cryst. C49, 1298-1300.

[^0]: Refinement on F^{2}
 $R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.053$
 $w R\left(F^{2}\right)=0.168$
 $S=1.07$
 3343 reflections
 209 parameters
 H -atom parameters constrained

